The Hardy Uncertainty Principle Revisited

نویسنده

  • M. COWLING
چکیده

We give a real-variable proof of the Hardy uncertainty principle. The method is based on energy estimates for evolutions with positive viscosity, convexity properties of free waves with Gaussian decay at two different times, elliptic L2-estimates and the invertibility of the Fourier transform on L2(Rn) and S′(Rn).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Sharp Hardy Uncertainty Principle for Schödinger Evolutions

We give a new proof of Hardy’s uncertainty principle, up to the end-point case, which is only based on calculus. The method allows us to extend Hardy’s uncertainty principle to Schrödinger equations with non-constant coefficients. We also deduce optimal Gaussian decay bounds for solutions to these Schrödinger equations.

متن کامل

Uncertainty Principles for Orthonormal Bases

In this survey, we present various forms of the uncertainty principle (Hardy, Heisenberg, Benedicks). We further give a new interpretation of the uncertainty principles as a statement about the time-frequency localization of elements of an orthonormal basis, which improves previous unpublished results of H. Shapiro. Finally, we show that Benedicks’ result implies that solutions of the Shrödinge...

متن کامل

Hardy Uncertainty Principle, Convexity and Parabolic Evolutions

We give a new proof of the L2 version of Hardy’s uncertainty principle based on calculus and on its dynamical version for the heat equation. The reasonings rely on new log-convexity properties and the derivation of optimal Gaussian decay bounds for solutions to the heat equation with Gaussian decay at a future time. We extend the result to heat equations with lower order variable coefficient.

متن کامل

The Multi-Dimensional Hardy Uncertainty Principle and its Interpretation in Terms of the Wigner Distribution; Relation With the Notion of Symplectic Capacity

We extend Hardy’s uncertainty principle for a square integrable function ψ and its Fourier transform to the n-dimensional case using a symplectic diagonalization. We use this extension to show that Hardy’s uncertainty principle is equivalent to a statement on the Wigner distribution Wψ of ψ. We give a geometric interpretation of our results in terms of the notion of symplectic capacity of an el...

متن کامل

HARDY’S THEOREM FOR THE n-DIMENSIONAL EUCLIDEAN MOTION GROUP

An uncertainty principle, due to Hardy, for Fourier transform pairs on R says that if the function f is “very rapidly decreasing”, then the Fourier transform cannot also be “very rapidly decreasing” unless f is identically zero. In this paper we state and prove an analogue of Hardy’s theorem for the ndimensional Euclidean motion group.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010